Couvre l'analyse de régression pour les données de désassemblage à l'aide de la modélisation de régression linéaire, des transformations, des interprétations des coefficients et des modèles linéaires généralisés.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.