Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.
Explore les chaînes Markov, Metropolis-Hastings, et la simulation à des fins d'optimisation, soulignant l'importance de l'ergonomie dans la simulation variable efficace.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Explore les mouvements de Monte Carlo en simulation, y compris les mouvements d'essai et les mouvements biaisés, en comparant Monte Carlo avec la dynamique moléculaire.
Couvre l'environnement informatique pour les exercices de dynamique moléculaire et de Monte Carlo, en mettant l'accent sur la compréhension théorique plutôt que sur les compétences de codage.
Discute de l'application des méthodes de Monte Carlo dans l'analyse du rayonnement thermique, en se concentrant sur les fonctions de probabilité et les techniques d'intégration numérique.