Explore les modèles de diffusion, en mettant l'accent sur la production d'échantillons provenant d'une distribution et l'importance de la dénigrement dans le processus.
Explorer la densité de calcul des états et l'inférence bayésienne à l'aide d'un échantillonnage d'importance, montrant une variance inférieure et la parallélisation de la méthode proposée.
Explore l'intégrabilité uniforme, les théorèmes de convergence et l'importance des séquences bornées dans la compréhension de la convergence des variables aléatoires.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.