Simulation stochastique : échantillonnage hypercube latin et quasi Monte Carlo
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Explore la génération de nombres quantiques aléatoires, en discutant des défis et des implémentations de générer une bonne randomité à l'aide de dispositifs quantiques.
Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.
Couvre la théorie et les applications de la coloration graphique, en se concentrant sur les modèles de blocs stochastiques dissortatifs et la coloration plantée.
Explore la quantification de l'incertitude à l'aide des méthodes de Quasi Monte Carlo et des mesures des écarts pour l'approximation intégrale et l'estimation du volume.
Explore les protocoles de recherche et de routage non structurés et structurés, en soulignant l'importance des hypothèses de structure du réseau et en introduisant l'algorithme 'Bubble Storm'.
Couvre les techniques de simulation stochastique et de réduction de la variance, en se concentrant sur la génération de distributions variables et auxiliaires de Courra.