Explore les résultats élémentaires en optimisation convexe, y compris les coques affines, convexes et coniques, les cônes appropriés et les fonctions convexes.
Introduit l'optimisation convexe à travers des ensembles et des fonctions, couvrant les intersections, exemples, opérations, gradient, Hessian, et applications du monde réel.
Sur Convex Optimization couvre l'organisation des cours, les problèmes d'optimisation mathématique, les concepts de solution et les méthodes d'optimisation.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.