Explore la mémoire longue dans les séries temporelles et les processus d'hétéroskédasticité conditionnelle autorégressive dans les données financières.
Couvre les modèles de données de comptage et la régression de Poisson, puis les transitions vers une analyse univariée des séries chronologiques pour la prévision des variables économiques.
Couvre les propriétés stochastiques des séries temporelles, de la stationnarité, de l'autocovariance, des processus stochastiques spéciaux, de la densité spectrale, des filtres numériques, des techniques d'estimation, du contrôle des modèles, de la prévision et des modèles avancés.
Couvre l'identification et la spécification du modèle dans l'analyse des séries chronologiques, y compris les modèles d'EI et l'estimation des moindres carrés.
Couvre la modélisation structurale, le filtre Kalman, la stationnarité, les méthodes d'estimation, la prévision et les modèles ARCH dans les séries chronologiques.
Explore l'analyse de séries chronologiques multivariées, la cointégration, la prévision avec les modèles ARMA, et les applications pratiques dans l'analyse des taux d'intérêt.
Explore l'analyse de séries temporelles univariées, couvrant la stationnarité, les processus ARMA, la sélection des modèles et les tests unitaires de racine.