Couvre les concepts fondamentaux de l'optimisation et de la recherche opérationnelle, en explorant des exemples du monde réel et des sujets clés sur un semestre.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Couvre la modélisation du système énergétique, l'optimisation, les scénarios, les prédictions, les complexités et les controverses dans les modèles énergétiques.
Explore l'optimisation primaire-duelle, la conjugaison des fonctions, la dualité forte, et les méthodes de pénalité quadratique en mathématiques de données.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.