Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore les bases de la neuroimagerie, les échelles du réseau cérébral, la connectivité, l'histoire et la physique, soulignant l'importance de comprendre les données à différentes échelles.
Explore la vue d'ensemble, la justification et les stratégies de la neuroscience de simulation, en mettant l'accent sur les défis de la reconstruction et de la simulation du cerveau.
Explore le traitement du signal graphique appliqué aux réseaux cérébraux, en mettant l'accent sur la relation entre la fonction cérébrale et la structure en utilisant des méthodes telles que le graphique Fourier Transform et l'indice de découplage structural.
Explore les modules du réseau cérébral et la structure communautaire, y compris le connectome fonctionnel modulaire naturel, la modularité du réseau et les algorithmes de détection communautaire.
Explore la classification des neurones, soulignant l'importance de comprendre la complexité du cerveau et les défis dans la définition des types de cellules.
Déplacez-vous dans le Graph Signal Processing dans les réseaux du cerveau, mettant l'accent sur l'intégration de la structure du cerveau et de la fonction par des techniques innovantes.