Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.
Couvre la définition du produit scalaire, des propriétés, des exemples et des applications dans les espaces euclidiens, y compris l'inégalité Cauchy-Schwartz.
Explore les isométries dans les espaces euclidiens, y compris les traductions, les rotations et les symétries linéaires, en mettant l'accent sur les matrices.