Régression logistique : interprétation et ingénierie des caractéristiques
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les bases de l'optimisation telles que les normes, la convexité et la différentiabilité, ainsi que les applications pratiques et les taux de convergence.
Introduit des bases d'optimisation, couvrant la régression logistique, les dérivés, les fonctions convexes, la descente de gradient et les méthodes de second ordre.
Couvre les attributs thématiques, la classification et la discrétisation des données dans la cartographie thématique en utilisant QGIS pour la cartographie proportionnelle des symboles.