Régression logistique : interprétation et ingénierie des caractéristiques
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de l'apprentissage automatique, couvrant la classification supervisée, les limites de décision et l'ajustement de la courbe polynomiale.
Explore lutilisation des modèles de mélange gaussien pour la transition du clustering à la classification, couvrant la classification binaire, lestimation des paramètres et le classificateur Bayes optimal.
Explore diverses approches de régularisation, y compris la quasi-norme L0 et la méthode Lasso, en discutant de la sélection des variables et des algorithmes efficaces pour l'optimisation.
Explore la convexité géodésique et son extension à l'optimisation sur les collecteurs, soulignant la préservation du fait clé que les minima locaux impliquent des minima globaux.