Explore la méthode des moments, le compromis biais-variance, la cohérence, le principe de plug-in et le principe de vraisemblance dans lestimation de point.
Explore le phénomène Stein, présentant les avantages du biais dans les statistiques de grande dimension et la supériorité de l'estimateur James-Stein sur l'estimateur de probabilité maximale.
Explore l'optimalité dans la théorie de la décision et l'estimation impartiale, en mettant l'accent sur la suffisance, l'exhaustivité et les limites inférieures du risque.
Couvre l'estimation maximale de la probabilité, en mettant l'accent sur l'estimation-distribution ML, l'estimation de la réduction et les fonctions de perte.
Explore l'estimation maximale de la probabilité, couvrant les hypothèses, les propriétés, la distribution, l'estimation du rétrécissement et les fonctions de perte.