Réseaux neuronaux pour l’apprentissage par l’action : Insights sur la mise en œuvre du cerveau
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Plongez dans les bases de l'apprentissage par renforcement, en discutant des états, des actions, des récompenses, des politiques et des applications de réseaux neuronaux.
Explore l'ensachage en tant que méthode de régularisation dans l'apprentissage en profondeur, en formant plusieurs variantes de modèles sur différents sous-ensembles de données pour améliorer la généralisation.
Explore les réseaux neuronaux artificiels, les informations sur les récompenses dans le cerveau, le conditionnement animal, l'apprentissage par renforcement profond et un quiz sur les récompenses.
Explore la caractéristique universelle de la formation de prix intrajournalière en utilisant des techniques d'apprentissage en profondeur pour prévoir les changements de prix en fonction de l'historique des flux d'ordres.
Explore la prévision des trajectoires dans les véhicules autonomes, en mettant l'accent sur les modèles d'apprentissage profond pour prédire les trajectoires humaines dans les scénarios de transport socialement conscients.
Explore le Dropout en tant que méthode de régularisation dans les réseaux neuronaux profonds, en mettant l'accent sur sa mise en œuvre pratique et son efficacité.
Couvre l'histoire et l'inspiration derrière les réseaux neuronaux artificiels, la structure des neurones, l'apprentissage par les connexions synaptiques et la description mathématique des neurones artificiels.