Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Explore la régression linéaire avec et sans covariables, couvrant des modèles capturés par des distributions indépendantes et des outils comme des sous-espaces et des projections orthogonales.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Couvre l'essentiel de la régression linéaire, en se concentrant sur l'utilisation de multiples variables explicatives quantitatives pour prédire un résultat quantitatif.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.
Explore l'analyse des génotypes et des variants grâce à une étude d'association à l'échelle du génome, en se concentrant sur l'association entre les variants génétiques et les phénotypes comme la hauteur.
Couvre la régression linéaire, la régularisation, les problèmes inverses, la tomographie par rayons X, la reconstruction d'images, l'inférence de données et l'intensité du détecteur.
Explore le modèle conditionnel gaussien pour la régression linéaire et les propriétés des données gaussiennes, illustré par l'exemple de comparaison du traitement par pierre rénale.