Explore l'apprentissage sécuritaire dans les systèmes de contrôle automatique, couvrant les défis, le contrôle sensible aux risques et les filtres de sécurité prédictifs.
Explore les approches et les défis modernes en matière d'acquisition de données pour l'apprentissage de contrôleurs optimaux au moyen de démonstrations et de méthodes axées sur les données.
Explore l'apprentissage sécuritaire en robotique, couvrant l'état de l'art, les défis ouverts et la vision sur le terrain, soulignant l'importance de la collaboration interdisciplinaire.
Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.
Explore l'apprentissage et le contrôle adaptatif des robots à travers SEDS et LPV-DS, mettant l'accent sur la stabilité, la dynamique non linéaire et l'optimisation.
Introduit l'apprentissage par renforcement, couvrant ses définitions, ses applications et ses fondements théoriques, tout en décrivant la structure et les objectifs du cours.
Explore l'accessibilité et la contrôlabilité dans les systèmes de contrôle multivariables, en discutant des essais, des épreuves et de leurs implications.