Introduit les principes fondamentaux du traitement des données, soulignant l'importance des Pandas et de la modélisation des données pour une analyse efficace.
Introduit des concepts de modélisation de données, l'utilisation de SQL et des applications de bibliothèque Pandas pour un traitement efficace des données.
Fournit une vue d'ensemble des concepts d'apprentissage profond, en se concentrant sur les données, l'architecture du modèle et les défis liés à la gestion de grands ensembles de données.
Explore la structure des rapports scientifiques et des expériences de titrage à base d'acide, en mettant l'accent sur l'enregistrement précis des données et une présentation claire.
Explore l'élaboration d'un modèle de données pour les cas d'utilisation scientifique et l'importance du suivi de l'origine et de l'utilisation des données.
Explore l'évolution de l'analyse des données à l'IA et au ML, en mettant l'accent sur les mégadonnées, l'apprentissage automatique et l'interaction avec les médias sociaux.
Étudier la mesure et l'opérationnalisation des résultats dans la gestion de la fièvre chez les enfants de moins de cinq ans au moyen d'exemples et d'approches de collecte de données.