Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Explore les données sur la consommation d'eau à Genève, y compris les graphiques sur la consommation et les pertes, les ensembles de données disponibles et les phases de traitement des données.
Couvre les fondements des systèmes de base de données, y compris la modélisation des données, le traitement de l'information et les défis de la gestion d'importants volumes de données.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Examine les défis que posent les hypothèses de données, les biais et d'autres aspects de la recherche, y compris les écritures incomplètes et les frustrations des nouveaux arrivants.
Explore l'importance de la reproductibilité dans la science des données et présente Renku, une plate-forme pour la gestion de projets axés sur les données.