Couvre l'interprétation et l'application des pouvoirs symboliques dans les structures algébriques, en mettant l'accent sur les anneaux Hauptideal Satz et Noetherian de Krull.
Explore les anneaux de Dedekind, les idéaux fractionnaires, les propriétés intégralement fermées, la factorisation idéale principale et la structure des idéaux fractionnaires en tant que groupe commutatif.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.