Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Explore les caractéristiques de la turbulence, les méthodes de simulation et les défis de modélisation, fournissant des lignes directrices pour le choix et la validation des modèles de turbulence.
Explore les bases des réseaux neuraux, le problème XOR, la classification et les applications pratiques comme la prévision des données météorologiques.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.