Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Explore les propriétés géométriques des paraboles et des hyperboloïdes en architecture, en mettant l'accent sur leurs implications de conception et leurs applications pratiques.
Explore les géodésiques sur les surfaces, en se concentrant sur la minimisation des distances et des propriétés des chemins, avec des exemples comme de grands cercles sur des sphères.
Couvre les récipients à pression linéaire, les coquilles minces et la pression critique de flambage, en mettant l'accent sur la réduction dimensionnelle de 3D à 2D.