Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur l'analyse de la consommation d'oxygène, couvrant la régression, l'interprétation des erreurs et l'application du modèle Michaelis-Menten.
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.
Couvre la décomposition des erreurs, la régression polynomiale et les voisins K les plus proches pour la modélisation flexible et les prédictions non linéaires.
Examine le mécanisme de changement de rapport automatique du moteur bactérien flagellaire et la découverte efficace du modèle en réponse aux changements de charges.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.