Discute de la méthode de gradient pour l'optimisation, en se concentrant sur son application dans l'apprentissage automatique et les conditions de convergence.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Explore comment les variables instrumentales corrigent les biais à partir des erreurs de mesure et de la causalité inverse dans les modèles de régression.
S'insère dans l'analyse de régression, en mettant l'accent sur le rôle des prédicteurs linéaires dans le rapprochement des résultats et en discutant des modèles linéaires généralisés et des techniques d'inférence causale.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Couvre les bases de la régression linéaire dans l'apprentissage automatique, y compris la formation des modèles, les fonctions de perte et les mesures d'évaluation.
Couvre la modélisation de la dépendance temporelle dans les séries chronologiques, y compris la tendance, les composantes périodiques, la régression, la stationnarité, l'autocorrélation et les essais d'indépendance.