Effets causaux Bounds: Paramètres de sensibilité sur l'échelle des différences de risque
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'analyse causale des données d'observation, des pièges, des outils permettant de tirer des conclusions valables et d'aborder les variables confusionnelles.
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Explore l'inférence causale en épidémiologie, en mettant l'accent sur l'impact de la COVID-19 sur la naissance prématurée et en perfectionnant les stratégies de traitement du cancer de la prostate.
Examine la distinction entre association et lien de causalité dans l'analyse statistique, en soulignant les limites de l'association dans l'inferration de lien de causalité.
Explore les risques dans les développements hydrauliques, y compris les risques économiques, technologiques et humains, en mettant l'accent sur l'analyse des risques et les mesures d'atténuation.
Examine la dépendance statistique, la confusion et les méthodes d'inférence causale, en mettant l'accent sur la distinction entre les approches existantes et nouvelles.