Explore l'évaluation de la précision et de la robustesse de la machine et de l'homme sur ImageNet, en soulignant les progrès, les défis et la nécessité d'améliorer.
Examine la généralisation des classificateurs ImageNet, les applications critiques pour la sécurité, le surajustement et la fiabilité des modèles d'apprentissage automatique.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Couvre les fondamentaux de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur les tâches de classification d'images à l'aide de l'intelligence artificielle.
Explore la classification des images en utilisant des arbres de décision et des forêts aléatoires pour réduire la variance et améliorer la robustesse du modèle.
Explore le sous-ajustement, le surajustement, les hyperparamètres, le compromis biais-variance et l'évaluation de modèle dans l'apprentissage automatique.
Introduit les principes fondamentaux de l'apprentissage statistique, couvrant l'apprentissage supervisé, la théorie de la décision, la minimisation des risques et l'ajustement excessif.