Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Explore les approches dynamiques de la théorie spectrale des opérateurs, en mettant l'accent sur les opérateurs auto-adjoints et les opérateurs Schrödinger avec des potentiels définis dynamiquement.
Explore les propriétés de mélange des systèmes de conservation de mesures infinies, en mettant l'accent sur les suspensions, les transformations de Govers et le gaz Lorentz.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.