Explore les problèmes d'optimisation convexe, les critères d'optimalité, les problèmes équivalents et les applications pratiques dans le transport et la robotique.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.
Couvre les bases de la programmation non linéaire et ses applications dans le contrôle optimal, en explorant des techniques, des exemples, des définitions d'optimalité et les conditions nécessaires.