Explore les contraintes, l'efficacité et la complexité de l'algèbre linéaire, en mettant l'accent sur la convexité et la complexité du pire des cas dans l'analyse algorithmique.
Explore la dualité de programmation linéaire, couvrant la dualité faible, la dualité forte, l'interprétation des multiplicateurs de Lagrange et les contraintes d'optimisation.
Couvre les bases de la programmation linéaire et de la méthode simplex, en se concentrant sur la recherche de solutions optimales et la manipulation de la dégénérescence.
Introduit les bases de la programmation linéaire, y compris les problèmes d'optimisation, les fonctions de coût, l'algorithme simplex, la géométrie des programmes linéaires, les points extrêmes et la dégénérescence.