Explore les techniques avancées de discrétisation de l'espace dans l'analyse numérique pour résoudre les systèmes différentiels de manière efficace et précise.
Explore des méthodes numériques telles que Crank-Nicolson, Heun, Euler et RK4 pour résoudre les ODE, en mettant l'accent sur l'estimation des erreurs et la convergence.
Explore la stabilité zéro et la stabilité absolue dans les méthodes numériques, y compris Forward Euler, Backward Euler, Crank-Nicolson, et les méthodes Heun.
Explore le transport optimal et les flux de gradient dans Rd, en mettant l'accent sur la convergence et le rôle des théorèmes de Lipschitz et Picard-Lindelf.