Contient les CNN, les RNN, les SVM et les méthodes d'apprentissage supervisé, soulignant l'importance d'harmoniser la régularisation et de prendre des décisions éclairées dans le domaine de l'apprentissage automatique.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Explore la complexité algorithmique, en comparant les taux de croissance en utilisant la notation Theta et en caractérisant différentes classes de complexité.
Explore la complexité de l'algorithme, la notation big-O, l'induction, la récursion et l'analyse des temps de fonctionnement, couvrant les problèmes NP et les classes de complexité.
Explore le centroïde, le médioïde, l'homogénéité, la séparabilité dans le clustering, l'évaluation de la qualité, la stabilité, les connaissances d'experts et les algorithmes de clustering.
Explore les aspects pratiques de la résolution des jeux de parité, y compris les stratégies gagnantes, les algorithmes, la complexité, le déterminisme et les approches heuristiques.