Introduit des modèles linéaires dans l'apprentissage automatique, couvrant les bases, les modèles paramétriques, la régression multi-sorties et les mesures d'évaluation.
Explore l'inférence statistique pour les modèles linéaires, couvrant l'ajustement du modèle, l'estimation des paramètres et la décomposition de la variance.
Explore des méthodes robustes et résistantes dans des modèles linéaires, en soulignant l'importance de gérer les observations extrêmes et les implications de la robustesse dans les modèles de régression.
Explore les modèles linéaires et quadratiques de Scheffé en mélangeant des plans et des schémas ternaires, en mettant l'accent sur les contraintes et les représentations.
Explore l'importance de la causalité pour l'apprentissage machine robuste, couvrant les ensembles de données idéaux, les problèmes de données manquants, les modèles graphiques et les modèles d'interférence.