Couvre les bases de la régression linéaire, la méthode OLS, les valeurs prédites, les résidus, la notation matricielle, la bonté d'adaptation, les tests d'hypothèse et les intervalles de confiance.
Explore la théorie de la distribution des estimateurs des moindres carrés dans un modèle linéaire gaussien, en mettant l'accent sur la construction des intervalles de précision et de confiance.
Couvre la théorie des probabilités, les distributions et l'estimation dans les statistiques, en mettant l'accent sur la précision, la précision et la résolution des mesures.
Explorer les distributions d'échantillonnage, les propriétés des estimateurs et les mesures statistiques pour les applications de la science des données.
Explore les caractéristiques de la distribution normale, les scores Z, la probabilité dans les statistiques inférentielles, les effets d'échantillon et l'approximation de la distribution binomiale.