Transformée de Fourier Rapide (FFT) : Séance de cours 4
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'algorithme Fast Fourier Transform (FFT) et ses applications en physique computationnelle, y compris le traitement d'images, les techniques expérimentales, les filtres et l'analyse des images en microscopie.
Explore les méthodes d'estimation du spectre paramétrique, y compris les spectres linéaires et lisses, et se penche sur l'analyse de la variabilité de la fréquence cardiaque.
Explore les outils de traitement statistique des signaux pour les communications sans fil, y compris l'estimation spectrale et la détection, la classification et le filtrage adaptatif des signaux.
Explore les fuites spectrales, les fonctions de fenêtre, les transformées de Fourier, le traitement d'image, les techniques expérimentales et les matériaux de graphène.
Explore l'analyse des données neurophysiologiques, couvrant l'identification AP, les taux de tir, l'activité sous le seuil, l'analyse spectrale FFT et l'analyse déclenchée par des événements à l'aide de MATLAB.
Explore les fondamentaux du traitement des signaux, y compris les signaux de temps discrets, la factorisation spectrale et les processus stochastiques.