Explore l'optimisation dans la modélisation des systèmes énergétiques, couvrant les variables de décision, les fonctions objectives et les différentes stratégies avec leurs avantages et leurs inconvénients.
Explore la vraisemblance du Whittle déprécié pour les séries chronologiques et les données spatiales, en mettant l'accent sur l'adaptation de la densité spectrale au parodogramme pour de meilleures prédictions et une meilleure estimation des paramètres.
Couvre la gestion des erreurs, les exceptions et les techniques de débogage en C++, soulignant l'importance de rendre le code plus robuste et plus facile à déboger.
Explore l'estimation des paramètres des EPS à l'aide de la théorie de la réponse linéaire et couvre les défis, les exemples, les algorithmes et la convergence.
Explore la modélisation des signaux neurobiologiques avec les chaînes Markov, en mettant l'accent sur l'estimation des paramètres et la classification des données.
Explore les modèles de mélange, y compris les mélanges discrets et continus, et leur application dans la capture de l'hétérogénéité du goût dans les populations.
Introduit des concepts d'inférence statistique, en se concentrant sur l'estimation des paramètres, les estimateurs non biaisés et l'estimation moyenne à l'aide de variables aléatoires indépendantes.