Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.
Explore la régression logistique, les fonctions de coût, la descente en gradient et la modélisation de probabilité à l'aide de la fonction sigmoïde logistique.
Explore la théorie des modèles linéaires généralisés, y compris la logistique et la régression de Poisson, lévaluation des modèles et les tests de coefficient.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Explore les modèles linéaires, la régression, la prédiction multi-sorties, la classification, la non-linéarité et l'optimisation basée sur le gradient.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.