Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Introduit des concepts clés dans l'analyse numérique et l'optimisation, en se concentrant sur les distances, les sous-ensembles et leurs propriétés dans Rn.
Explore la compacité, la continuité et les espaces de quotient en topologie, en mettant l'accent sur la topologie des lignes en R2 et les propriétés des ensembles compacts.
Couvre les bases de la topologie, en mettant l'accent sur la cohomologie et les espaces de quotient, en mettant l'accent sur leurs définitions et leurs propriétés à travers des exemples et des exercices.