Quantifier l'aléatoire et l'information dans les données biologiques
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Plonge dans l’entropie des données neuroscientifiques et de l’écologie, explorant la représentation de l’information sensorielle et la diversité des populations biologiques.
Explore les promenades aléatoires, le modèle Moran, la chimiotaxie bactérienne, l'entropie, la théorie de l'information et les sites en coévolution dans les protéines.
Explore des promenades aléatoires, le processus Moran et des exemples de génétique des populations, de modélisation de l'abondance des protéines et de chimiotaxie bactérienne.
Discuter du compromis entre les variables biaisées dans l'apprentissage automatique, en mettant l'accent sur l'équilibre entre la complexité du modèle et l'exactitude des prédictions.
Discute du hasard dans l'auto-organisation sociale, explorant son rôle dans les processus démocratiques et les défis de la représentation et de l'exactitude.
Sur l'entropie et l'information mutuelle explore la quantification de l'information dans la science des données au moyen de distributions de probabilités.
Plonge dans la quantification de l'entropie dans les données de neurosciences, explorant comment l'activité neuronale représente l'information sensorielle et les implications des séquences binaires.