Fournit une vue d'ensemble des techniques d'interpolation polynomiale en analyse numérique, en se concentrant sur les méthodes d'interpolation et d'estimation des erreurs de Lagrange.
Couvre la dérivation de l'équation du mouvement, de l'interpolation, de l'équation de Newton et de la conservation de l'énergie dans la modélisation des éléments finis.
Couvre les techniques d'intégration numérique, en se concentrant sur l'interpolation de Lagrange et diverses méthodes de quadrature pour l'approximation des intégrales.