Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.
Explorer l'interprétation des modèles de régression logistique, l'estimation des paramètres et la comparaison des modèles à l'aide de tests de rapport de probabilité.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.