Explorer la théorie principale de l'analyse des composants, les propriétés, les applications et les tests d'hypothèse dans les statistiques multivariées.
Couvre les approches d'apprentissage automatique pour la personnalisation et leur application dans le monde réel, en mettant l'accent sur les devoirs, les projets et les commentaires.
Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.
Couvre des modèles thématiques, en se concentrant sur l'allocation de Dirichlet latente, le regroupement, les MGM, la distribution de Dirichlet, l'apprentissage LDA et les applications en humanités numériques.