Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Couvre les récipients à pression linéaire, les coquilles minces et la pression critique de flambage, en mettant l'accent sur la réduction dimensionnelle de 3D à 2D.
Explore les opérateurs différentiels, les courbes régulières, les normes et les fonctions injectives, en répondant aux questions sur les propriétés, les normes, la simplicité et l'injectivité des courbes.
Introduit la divergence et les théorèmes de Stokes, en comparant les intégrales de surface et de volume, et explique le paramétrage des surfaces et des limites.