Se penche sur la mesure des effets de l'apprentissage dans l'éducation numérique et l'analyse, couvrant les questions de recherche, les variables, la conception expérimentale et les solutions de biais.
Explore les défis expérimentaux de conception en sciences sociales, en mettant l'accent sur la formulation d'hypothèses, le contrôle variable et l'atténuation des biais.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Examine les tests d'hypothèse dans les statistiques, en mettant l'accent sur la prise de décision basée sur des données d'échantillon et le contrôle des probabilités d'erreurs.
Introduit des statistiques descriptives, une quantification de l'incertitude et des relations variables, soulignant l'importance de l'interprétation statistique et de l'analyse critique.
Explore comment les variables instrumentales corrigent les biais à partir des erreurs de mesure et de la causalité inverse dans les modèles de régression.
Couvre les bases de la conception et de l'analyse expérimentales, en mettant l'accent sur les techniques statistiques comme l'ANOVA, la régression, la médiation et la modération.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Explore les effets du rouge sur l'attractivité, la désirabilité et le statut, en mettant l'accent sur l'analyse statistique et les défis de la réplication et du biais de publication.