Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Explore la sensibilité des solutions dans les méthodes numériques, y compris les systèmes linéaires et les normes matricielles, avec un exemple de débluring images.
Se concentre sur la modélisation numérique des processus atmosphériques pour prédire les phénomènes météorologiques et climatiques, couvrant les concepts et les méthodes clés.
Fournit un examen des concepts d'algèbre linéaire cruciaux pour l'optimisation convexe, couvrant des sujets tels que les normes vectorielles, les valeurs propres et les matrices semi-définies positives.
Explore les méthodes d'éléments finis pour les problèmes d'élasticité et les formulations variationnelles, en mettant l'accent sur les déformations admissibles et les implémentations numériques.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.