Couvre l'analyse causale des données d'observation, des pièges, des outils permettant de tirer des conclusions valables et d'aborder les variables confusionnelles.
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Explore l'inférence causale, les graphiques dirigés et l'équité dans les algorithmes, en mettant l'accent sur l'indépendance conditionnelle et les implications des GAD.
Examine la dépendance statistique, la confusion et les méthodes d'inférence causale, en mettant l'accent sur la distinction entre les approches existantes et nouvelles.
Étudier les limites des effets causaux en utilisant des paramètres de sensibilité à l'échelle de la différence de risque, en abordant les limites et en proposant de nouvelles approches.