Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Explore le phénomène Stein, présentant les avantages du biais dans les statistiques de grande dimension et la supériorité de l'estimateur James-Stein sur l'estimateur de probabilité maximale.
Explore l'apprentissage des modèles graphiques avec les estimateurs M, la régression des processus Gaussiens, la modélisation Google PageRank, l'estimation de la densité et les modèles linéaires généralisés.
Couvre l'inférence, la construction de modèles, la sélection de variables, la robustesse, la régression régularisée, les modèles mixtes et les méthodes de régression.