Explore les tests t, les intervalles de confiance, l'ANOVA et les tests d'hypothèse dans les statistiques, en soulignant l'importance d'éviter les fausses découvertes et de comprendre la logique derrière les tests statistiques.
Déplacez-vous dans les tests d'hypothèses, couvrant les statistiques d'essais, les régions critiques, les fonctions de puissance, les valeurs p, les tests multiples et les statistiques non paramétriques.
Fournit un aperçu de la théorie des probabilités de base, de l'ANOVA, des tests t, du théorème de limite centrale, des métriques, des intervalles de confiance et des tests non paramétriques.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Examine les tests d'hypothèse dans les statistiques, en mettant l'accent sur la prise de décision basée sur des données d'échantillon et le contrôle des probabilités d'erreurs.
Explorer les tests d'hypothèses, les niveaux de signification, les erreurs, les GWAS, les tests optimaux et l'estimation ponctuelle dans les statistiques.
Couvre les concepts fondamentaux des probabilités et des statistiques, y compris la régression linéaire, les statistiques exploratoires et l'analyse des probabilités.
Explore les tests d'hypothèses statistiques, y compris la construction d'intervalles de confiance, l'interprétation des valeurs p et la prise de décisions en fonction des niveaux d'importance.