Couvre les méthodes numériques pour résoudre les équations différentielles et leur analyse de stabilité, en se concentrant sur le calcul des erreurs et les applications pratiques en ingénierie et en science.
Fournit un aperçu des équations différentielles, de leurs propriétés et des méthodes pour trouver des solutions à travers divers exemples et représentations graphiques.
Couvre la théorie et les méthodes de résolution des équations différentielles séparables, en mettant l'accent sur l'existence, l'unicité et la construction de solutions par l'intégration.