Explore le problème de la valeur propre de Sturm-Liouville, en mettant l'accent sur le rôle essentiel des conditions aux limites pour assurer l'auto-intégration et former une base orthogonale.
Couvre les concepts fondamentaux de la mécanique quantique, y compris les espaces vectoriels, la superposition, les observables et le produit intérieur.
Couvre l'exponentielle des opérateurs et des matrices, les propriétés de commutation, la forme normale de la Jordanie et les concepts d'algèbre linéaire liés aux opérateurs linéaires et aux problèmes de valeurs propres.