Couvre la définition de la distribution gaussienne multivariée et de ses propriétés, y compris la fonction génératrice de moment et les combinaisons linéaires de variables.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore la moyenne, la variance, les fonctions de probabilité, les inégalités et divers types de variables aléatoires, y compris les distributions binomiale, géométrique, Poisson et gaussienne.