Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore la vue d'ensemble, la justification et les stratégies de la neuroscience de simulation, en mettant l'accent sur les défis de la reconstruction et de la simulation du cerveau.
Explore les bases de la neuroimagerie, les échelles du réseau cérébral, la connectivité, l'histoire et la physique, soulignant l'importance de comprendre les données à différentes échelles.
Explore la classification des neurones, soulignant l'importance de comprendre la complexité du cerveau et les défis dans la définition des types de cellules.
Explore l'intégration des mesures du cerveau humain pour comprendre la photosensibilité et l'impact de la stimulation électrique sur la hiérarchie visuelle.
Explore le traitement du signal graphique appliqué aux réseaux cérébraux, en mettant l'accent sur la relation entre la fonction cérébrale et la structure en utilisant des méthodes telles que le graphique Fourier Transform et l'indice de découplage structural.
S'oriente vers l'analyse de la dynamique cérébrale et des réseaux à l'aide de techniques de neuroimagerie avancées et de méthodes de traitement des signaux.
Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.