Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Introduit l'analyse des composantes principales, en mettant l'accent sur la maximisation de la variance dans les combinaisons linéaires pour résumer efficacement les données.
Explore la décomposition de la valeur singulière et l'analyse des composantes principales pour la réduction de la dimensionnalité, avec des applications de visualisation et d'efficacité.
Couvre les concepts clés de l'analyse des composantes principales (APC) et ses applications pratiques dans la réduction de dimensionnalité des données et l'extraction des caractéristiques.
Couvre PCA et LDA pour la réduction de dimensionnalité, expliquant la maximisation de la variance, les problèmes de vecteurs propres et les avantages de Kernel PCA pour les données non linéaires.
Couvre l'analyse des composantes principales pour l'estimation de la forme de la courbe de rendement et la réduction des dimensions dans les modèles de taux d'intérêt.